```
〈小学校 算数 〉
```


学びを「つなぎ」「深める」児童の育成

一「数学的な見方•考え方」を働かせた学習過程の工夫と振り返りの充実を通してー

浦添市立 神森小学校
上村 匠

I テーマ設定理由 1
II 目指す子ども像 2
III 研究の目標 2
IV 研究仮説 2
1 基本仮説 2
2 作業仮説 2
V 研究構想図 2
VI 研究内容 3
1 学びを「つなぐ」について 3
2 学びを「深める」について 3
3 「数学的な見方•考え方」について 4
4 学習過程について 5
5 振り返りの充実について 5
VII 授業実践 7
1 単元名 7
2 単元の目標 7
3 単元の評価規準 7
4 単元について 7
5 単元の系統性 8
6 指導と評価計画 8
7 本時の学習 9
VIII 研究の考察 11
1 作業仮説（1）の検証 11
2 作業仮説（2）の検証 13
3 本研究を通して 15
IX 研究の成果と課題 16
1 成果 16
2 課題 16
おわりに 16
主な参考•引用文献 16

学びを「つなぎ」「深める」児童の育成

－「数学的な見方•考え方」を働かせた学習過程の工夫と振り返りの充実を通して－

浦添市立神森小学校 上村匠

【要約】

本研究は，学びを「つなぎ」「深める」児童の育成のために，「数学的な見方•考え方」を働かせた学習過程の工夫や振り返りの充実に取り組んだ。児童が「数学的な見方•考え方」を働かせて，見通しを持ち対話によって問題解決できるような学習過程から学びを「つなぎ」，振り返りによって学びを「深 め」たり，学ぶ意義を実感したりできるような手だてを考え，検証を行った。 キーワードロ学びをつなぐ・深める \square 数学的な見方•考え方 \square 学習過程 \square 振り返り \square 学ぶ意義

I テーマ設定理由

子供たちが将来活躍する頃の日本は，変化が激 しく予測困難な，厳しい挑戦の時代を迎えている と予想される。学校教育には，子供たちが様々な変化い積極的に関わり，他者と協働して課題を解決していくことや，知識を概念的に理解して再構成し新たな価値につなげたり，目的を再構築する ことのできる力の育成が求められている。
小学校学習指導要領解説総則編（2017）（以降，解説総則編）では，急速な社会の変化の中で，一人一人の児童が自分のよさや可能性を認識し，持続可能な社会の創り手となる「社会に開かれた教育課程の実現」が明記され，資質•能力の育成と，そ のための視点である「主体的•対話的で深い学び」 の実現に向けた授業改善が強く求められた。その中で，「問題発見•解決能力」が児童の学びを支え る「学習の基盤となる資質•能力」の一つとして示 され，同じく学びの過程として「問題発見•解決の過程」が位置づけられている算数科での資質•能力 の育成は，重要な課題である。

本県でも，「学びの質を高める授業改善」を重点 におき，資質•能力の育成を目指す授業改善や「学 びの目的意識の向上」が，さらに求められている。

自分自身のこれまでの指導を振り返ってみると，児童が主体的に学べるような発問•展開の工夫や，対話的な学習となるような話し合い活動の充実を意識し，取り組んできた。その結果，児童の姿と して，主に知識•技能が問われる問題では一定の成果を見せるものの，それらを活用した思考力•判断力•表現力を問ら問題に直面すると正解でき なかったり無答にしてしまったりする姿，再テス

トで点数を落としてしまう姿などが多くあった。学びの実態を把握するための調査では，「学習した あと『できるようになってられしい』『分かるよう になって楽しい』と感じることがある」という項目で，肯定的な回答は 48% という結果となった。 また，肯定的な回答に対する「それはどんな時か」 という質問では，基礎的•基本的な知識及び技能 を「覚えた，できた」ことへの達成感について多 くの記述がみられた一方で，「新たな考えを発見す る喜び」や「学ぶことの良さ」，「次への意欲」等 の「学ぶ意義」に関する記述は見られなかった。 このことから，児童の学びが，まだまだ学習指導要領や本県の目指す「主体的•対話的で深い学び」「質の高い学び」となっていなかったものと考え られる。

そこで本研究を通して，児童が学ぶ意義を感じ，能動的に学ぶ姿勢を身に付けられるようにしたい。 そのために，「『問い』を生む課題設定」や「対話 を通した課題解決」の場を設定する。これにより児童は，既習の知識や友達の考えを新たな学習場面と「つなぎ」，主体的で対話的な学習ができると考える。また児童が，自分でも意識して学びを「深 める」ことに向かえるよう，振り返りに関する「発問の工夫」「視点の提示」「振り返りシートの活用」 に取り組む。これにより児童は，学習内容をより「深める」とともに，学びの良さや価値に気付き，学ぶ意義を実感して，新たな学ぶ目的に向からこ とができると考える。以上により，自ら学びを「つ なぎ」「深め」ながら，主体的に次の学びへ向かう ことのできる児童の育成につながるのではないか と考え，本テーマを設定した。

II 目指す子ども像

1 学習した知識及び技能を相互につなぎ，学 びを深めることができる児童
2 一連の学習過程を通して自らの学習を振り返りながら，自己の変容や学ぶ意義を自覚し，生活に生かすことができる児童

III 研究の目標

「数学的な見方•考え方」を働かせた学習過程 を工夫することや，自分の学びを自覚できる振 り返りを充実させることで，学びを「つなぎ」「深 める」児童の育成を目指す。

IV 研究仮説

1 基本仮説

算数科の授業実践において，「数学的な見方•考え方」を働かせた学習過程を工夫し，

V 研究構想図

学びを自覚できる振り返りを充実させるこ とを通して，学びを「つなぎ」「深める」 児童 を育成することができるであろう。
2 作業仮説
（1）問題解決の学習場面において，「『問い』 の生まれる課題設定」「対話を通した課題解決」という「数学的な見方•考え方」を働か せた学習過程を工夫することで考える視点 が明確になり，主体的•対話的に知識をつな ぎ，よりよく考えることができるであろう。 （2）学習の振り返りの場面において，自分の学びを明確に意識できる発問や振り返りの視点，振り返りシートを充実させることで，児童は自身の学びをより深めたり，価値に気付いたりして，学ぶ意義を実感すること ができるであろう。

《目指す子ども像》

1 学習した知識及び技能を相互につなぎ，学びを深めることができる児童
2 一連の学習過程を通して自らの学習を振り返りながら，学ぶ意義や自己の変容を自覚し，生活に生かす
ことができる児童
《研究 テーマ
学びを「つなぎ」「深める」児童の育成
－「数学的な見方•考え方」を働かせた学習過程の工夫と振り返りの充実を通して－

《研究の目標》

「数学的な見方•考え方」を働かせた学習過程を工夫することや，自分の学びを意識化できる振り返りを充実させることで，学びを「つなぎ」「深める」児童の育成を目指す。

《研究仮説》

《基本仮説》

算数科の授業実践において，「数学的な見方•考え方」を働かせた学習過程を工夫し，学びを自覚で きる振り返りを充実させることを通して，学びを「つなぎ」「深める」児童を育成することができるで あろう。

《作業仮説（1）》
問題解決の学習場面において，「『問い』の生まれる課題設定」「対話を通した課題解決」という「数学的 な見方•考え方」を働かせた学習過程を工夫すること で考える視点が明確になり，主体的•対話的に知識を つなぎ，よりよく考えることができるであろう。

《作業仮説（2）》
学習の振り返りの場面において，自分の学び を明確に意識できる発問や振り返りの視点，振 り返りシートを充実させることで，児童は自身 の学びをより深めたり，価値に気付いたりして，学ぶ意義を実感することができるであろう。

1 学びを「つなぐ」について 2 学びを「深める」について 3 「数学的な見方•考え方」について 4 学習過程について 5 振り返りの充実について

授業実践•評価

```
研究のまとめ・成果と課題
```


VI 研究内容

1 学びを「つなぐ」について
解説総則編では，「子供たちが学習内容を人生や社会のあり方と結びつけて深く理解 し，生涯にわたり能動的に学び続けることが できるようにするため」に必要な視点として「主体的•対話的で深い学び」が示されてい る。児童が能動的に学び続けるには，主体的•対話的で深い学びの視点を踏まえた授業づ くりから，児童が「自ら学びをつなぐ態度」 を育成することが重要だと考える。

解説総則編では，「主体的な学び」について，児童が「学ぶことに興味や関心」をもち，「見通しをもつて粘り強く」取り組むことや，「自己の学習活動を振り返って次につなげる」こ とが必要とされている。「見通し」について小学校学習指導要領解説算数編（以降，解説算数編）では，「既習事項」をもとにしながら「結果や方法の見通しをもつ」ことが示されてい る。児童が興味や関心をもちながら，見通し をもとに問題解決したり，学習を振り返るこ とで学びをさらに次の学習へとつなげてい ける主体的な態度が必要である。また，「対話的な学び」については，他者との協働や対話 を通して「自分の考えを広げ深める」視点が示されている。解説算数編においても，「より よい解法に洗練させていくための意見の交流や議論」の必要性が述べられていることか ら，自分の考えと友達の考えをつなぐ対話的 な学習で，よりよい問題解決につなげること が必要である。さらに，各教科等の特質に応 じた「見方•考え方」を働かせながら，「知識 を相互に関連させてより深く理解」したりす ることに向から「深い学び」の視点も示され ている。各教科等の「見方•考え方」は，主体的で対話的な学びにより知識を「つなぐ」過程の中で働かせることができるものと考 えられる。

以上より児童の「学びをつなぐ姿」として，本研究では「①既習の知識を新たな学習場面

とつなぎ，見通しをもつて主体的に問題解決 に取り組む児童」「（2）対話的な学習を通して自分の考えと友達の考えをつなぎ，よりよく考える児童」「③学習を振り返り，自分の学び を，新たな目的や価値とつなぐ児童」として捉えたい。
2 学びを「深める」について
田村（2018）は，「主体的な学び」「対話的な学び」を目指すことの重要性を述べながら， それらが深い学びの実現に向から「確かな学 び」となっているかが極めて重要，と強調し ている。その上で，「深い学びの視点を意識し た授業改善」と，深い学びを「知識中心に捉 え直す」ことの必要性を述べている。それに よれば，「深い学び」の実現によって知識は関連付けられ，それぞれが個々のものではなく， つながりをもつた「構造的な知識」となり，児童の学ぶ様子として現れることが示され ている。田村は，これを「構造化された知識」 として四つのタイプに分類し，知識が相互に つながる様子を示している（図1－1，2）。

図1－1「深い学び」の実現による「構造化された知識」のタイプ 田村学「深い学び（2018）」を参考に作成

図1－2「深い学び」の実現による「構造化された知識」のタイプ

さらに，「深い学び」の実現による知識の構造化を目指すことは，「資質•能力」三つの柱 を育成することにも密接に関わってくるこ とを，田村は次のように示している（図2）。

（A宣言的な知識がつながるタイプ

（B）手続き的な知識がつながるタイプ

生きて働く「知識•技能」

相互につながり合った知識や技能は，生きて働く「知識•技能」（何を理解しているか，何が できるか）になる。

（C）知識が場面とつながるタイプ

未知の状況にも対応できる
「思考力•判断力•表現力」
場面や状況とつながった知識•技能は「思考力•判断力•表現力」（理解していること・できる ことをどら使うか）になると考えられる。

（D）知識が目的や価値，手応えとつながるタイプ

学びを人生や社会に生かそうとする「学びに向かう力•人間性等」
目的や価値，手応えとつながり，構造化して高度化した知識は「どのように社会と関わり， よりよい人生を送るか」という「学びに向かう力•人間性等」になると考えられる。

これを参考にし，知識の構造化をねらら授業づくりに取り組むことで，児童の学びの深 まりや，資質•能力の育成につなげたい。こ のことから本研究では，児童の「学びを深め る姿」として，「①学びを振り返って，学習内容を深める児童」「（2）学びを振り返って，学ん だことの価値に気付き，学ぶ意義を実感する児童」として捉えたい。

以上より，児童は一連の学習過程を通して，知識を「つなぎ」，よりよく考え，学習を振り返ってさらに「深める」なかで，自分の学び の価値に気付き，学ぶ意義を実感して，次の新たな目的へと学びを「つなぐ」ことができ ると考える。それには，教師による手だてが重要である。本研究では，児童が学びをつな ぐための「学習過程の工夫」と，学びを深め るための「振り返りの充実」についてそれぞ れ手だてを設定し，取り組んでいきたい。
3 「数学的な見方•考え方」について
解説総則編では，深い学びの鍵として「見方•考え方」を働かせることが示されており，「教科等の学習と社会をつなぐもの」として いる。解説算数編によれば，「数学的な見方•考え方」とは「事象を数量や図形及びそれら の関係などに着目して捉え，根拠を基に筋道 を立てて考え，統合的•発展的に考えること」 であり，各学年の領域で身に付ける思考力，判断力，表現力等が，「数学的な見方•考え方」 と対応する形で示されている（表1）。

表1 算数科第4学年の目標及び分数領域の内容

第3章 第4節 1 第 4 学年の目標

（2）数とその表現や数量の関係に着目し，目的に合った表現方法を用いて計算の仕方などを考察する力，図形を構成する要素及びそれらの位置関係に着目し，図形の性質や図形の計量について考察する力，伴って変わる二つの数量やそれらの関係に着目し，変化や対応の特徴を見いだして，二つの数量の関係を表や式を用いて考察 する力，目的に応じてデータを収集し，データの特徴や傾向に着目して表やグラフ に的確に表現し，それらを用いて問題解決したり，解決の過程や結果を多面的に捉 え考察したりする力などを養う。
2 第 4 学年の内容 A数と計算（5）同分母の分数の加法，減法
イ 次のような思考力•判断力•表現力等を身につけること。
（ア）数を構成する単位に着目し，大きさの等しい分数を探したり，計算の仕方を
考えたりするとともに，それを日常生活に生かすこと。

※下線部

 は数学的な見方， は数学的な考え方「数学的な見方•考え方」について，盛山 （2018）は数学的な見方を「問題を解くときの着眼点」，数学的な考え方を「論理をまとめ

たり高めたりするための視点」と整理して いる。これらをふまえ本研究では，研究内容1「学びをつなぐ」との関わりから，「数学的な見方•考え方」を「新たな学習場面 の問題解決につながる，（主に）既習事項を もとにした考え・表現」と捉える。「数学的 な見方•考え方」を引き出す授業づくりを することで，児童の考える視点が明確にな って問題解決への見通しや助けとなり，主体的な学習へとつながって，学びの深まり にも有効に働くものと考える。なお，児童 から引き出した「数学的な見方•考え方」 は，板書の際「算数のミカタカード」（以降，「ミカタカード」）を掲示し視覚化する
（図3）。見通しや話し合ら際に意識させる ために活用していきたい。

図3 算数のミカタカード
4 学習過程について
解説算数編において，「資質•能力が育成さ れるためには，学習過程の果たす役割が極め て重要」とされており，児童が学びを「つなぎ」「深める」ための学習過程の工夫が大切だと考える。児童が「数学的な見方•考え方」を働 かせながら主体的で対話的に学びを深めて いけるよう，本研究では「『問い』の生まれる課題設定」と「対話を通した課題解决」とい ら学習過程を設定する。
（1）「問い」の生まれる課題設定伊藤（2015）は，問題に「しかけ」を取り入 れて提示することで，「数学的な見方•考え方」 を効果的に焦点化できるとともに，児童の主体的な学習が期待できるとしている（表2）。

表2 問題提示の際の「10のしかけ」伊藤（2015）

（1）選択肢をつくる（2）隠す（3）間違える（4）情報過多にする （5）情報不足にする（6）分類する（7）位置•配置を変える （8）順序を変える（9）図や絵に置き換える（10）仮定する

本研究では，この「しかけ」を取り入れた問題提示から，本時で働かせたい「数学的な

見方•考え方」を明確にし，児童の解決した い「問い」へとつなげ課題を設定する。問題発見の場面で生じた「問い」を解決していく過程で，児童は考える視点が明確になり，主体的な学習につながるものと考える。その際，明確になった「数学的な見方•考え方」は，板書の際「ミカタカード」を近くに掲示して視覚化し，問題解決に取り組むための見通し として活用できるよう声かけしていく。
（2）対話を通した課題解決
解説算数編では，問題解決の過程で「より よい解法に洗練させていくため」に必要なこ ととして，「意見の交流や議論などの対話的 な学び」と，その際「あらかじめ自己の考え をもつこと」が示されている。伊藤（2015） は，授業づくりの際「数学的な見方•考え方」 を焦点化し，授業ではそれを全体で共有し，問題解決していくことの必要性を述べてお り，そのための活動として「友達の考えを解釈する活動」「友達の考えを自分の言葉で表現する活動」などが有効だとしている。児童 が対話を通して学びをつなぎ，よりよく考え られるよう，本研究では「数学的な見方•考 え方」をもとにして自分の考えを持ち，教師 と児童，または児童同士による対話によって問題解決していく場面を設定する。
5 振り返りの充実について
授業の終末で記入する振り返りが，形式的 なもので終わってしまうことなく，今後にも生かせる「深い学び」へとつなげるため，終末の振り返りの充実が必要だと考える。田村 は，振り返りの機能について「（1）学習内容を確認する（2）学習内容を現在や過去の学習内容と関連付けたり，一般化したりする③学習内容を自らとつなげ自己変容を自覚する」な どがあるとし，どの機能も「深い学び」と大 きく関わることを強調している。児童が，学 びをより深めることで，自己の学びや学ぶ意義を実感し，主体的に次の学びにつなげられ るような振り返りの充実をねらいたい。本研

究では，先の，振り返りの三つの機能を期待 し，振り返りに関する「発問」「視点の提示」「シートの活用」の三つの手だてにより，振 り返りの充実に取り組む。
（1）効果的な振り返りのための発問
授業終末の振り返りを効果的なものにす るためには，授業の導入•展開•終末それぞ れにおいて「学習の振り返りを促す発問」が有効だと考える。盛山（2018）によれば，導入は「目の前の問題をどのように解いていく のか」，展開は「どのように解いていったの か」，終末においては「数学的な考え方を働か せ，豊かにするため」の発問が想定されると している。本研究では，授業の導入•展開•終末の三段階で次のような発問を意識的に用いて振り返りを促していく（表3）。

表3 授業の各場面における発問例

導入：「今までの，どんな学習が使えそう？」展開：「どうしてそう考えたの？」終末：「共通している考え方は？」

「発展させて考えることはできる？」
児童に振り返りを意識づけることで，より深い学びへとつなげ，終末の振り返りをより効果的なものとしたい。それにより児童は， これまでの学びが新たな場面で役立つこと，学習の振り返りが問題解決につながること などを実感し，今後の学習の見通しや意欲の向上にもつながっていくものと考える。
（2）「振り返りの視点」の提示
児童が，自分でも学びを深めることを意識して振り返ることができるよう，視点を
明確に示すことが有効だと考える（図 4）。

図 4 「構造化された知識」タイプ別の振り返りの視点

このように，田村の「構造化された知識」 のタイプをもとに，「学びの深まり」をイメ ージしやすいイラストとあわせて「振り返 りの視点」を示す。これをもとに，あらか じめ教師と児童とで「深い学び」のイメー ジを共有しておくことで，教師は深い学び を意識した授業づくりができるとともに，児童は授業で「つなげた学び」を自分でも「深める」ことを意識して，学習を振り返 ることができると考える。
（3）「学びの足あとシート」の活用
児童の学びの姿が，一単位時間の授業内 では現れにくい場合や，四つのタイプが混在して現れたりする場合が想定される。そ こで今回は，「学びの足あとシート」を活用 し，単元を内容のまとまりごとに小単元で分け，それぞれでめあてや振り返りの場を設定することで，児童が単元を通して学び のつながりを意識し振り返ることができる ようにしたい。小単元ごとの振り返りはお もて面のシートA（図5），単元終末の振り返りは裏面のシートB（図6）とする。

$\begin{aligned} & \text { 名: 算数. } \\ & \text { 名 : 数 } \\ & \text { めあて } \end{aligned}$	O特に大事だと思った／．	つながりタイフ。	スラス
	自分かりのた使えてうな「ミカタ」，		
	0友達の考えに眭られたこと 0感相		
	${ }^{+}$	（0） 0 ？	（0）
		とんな学び？	とんな学

図5 学びの足あとシートA（おもて面：小単元ごと）
図6 学びの足あとシートB（裏面：単元終末）

「学びの足あとシート」は，児童が学びを振り返り次へと生かす自己評価であるとと もに，教師の指導にも活用できると考える。各小単元の学習を終えた際には，シートA をもとに児童の学びの実態をみとり，次の小単元の指導へと生かしていきたい。

1 単元名 「分数」（啓林館 4下 P72～83）
2 単元の目標
分数について， 1 より大きい分数の表し方や等しい分数について理解し，同分母分数の加減の計算方法を考えたり説明したりすることを通して，分数についての理解を深めるとともに，生活や学習に活用しようと する態度を養う。
3 単元の評価規準

知識•技能	思考•判断•表現	主体的に学習に取り組む態度
－数直線や図を用いて，分数の大きさを表 すことができる。 －真分数，仮分数，帯分数の意味について理解している。 － 1 より大きい分数を仮分数でも帯分数 でも表すことができる。 - 同分母の加法及び減法の計算ができる。 - 数直線に示された分数を観察し，表し方 が違っても大きさの等しい分数に気付 き，見つけることができる。	－分数の大きさを，数直線や図などで表し たり，分数が表された数直線や図を読み取ったりして，分数の大きさについて判断したり表現したりしている。 －同分母の分数の加法及び減法の計算の仕方を，日常生活における場面や単位分数の個数に着目して考えている。	－1 より小さい分数の意味をもとに して， 1 より大きい分数の意味や，同分母の分数の加法及び減法の計算の仕方について考えようとして いる。

4 単元について
（1）教材観
本単元は，学習指導要領第 4 学年の内容「A数と計算」（5）「同分母の加法，減法」に示された指導事項のうち， 1 より大きい分数の表し方や等しい分数について理解したり，同分母分数の計算方法を身につ けたりする力を育成することのできる単元である。また，「数を構成する単位（単位分数）」に着目する ことで，大きさの等しい分数を探したり，計算の仕方を考えていく，という「数学的な見方•考え方」を働かせながら問題発見•解決ができる単元である。
（5）分数とその加法及び減法に関わる数学的活動を通して，次の事項を身に付けることができるよう指導する。 ア 次のような知識及び技能を身に付けること。
（ア）簡単な場合について，大きさの等しい分数があることを知ること。
（イ）同分母の分数の加法及び減法の計算ができること。
イ 次のような思考力，判断力，表現力等を身に付けること。
（ア）数を構成する単位に着目し，大きさの等しい分数を探したり，計算の仕方を考えたりするとともに， それを日常生活に生かすこと。
第3学年では，1 より小さい分数について，数のまとまりに着目し，分数でも数を比べたり計算したり できるかどうかを考える学習活動をしている。第 4 学年では，「数学的な見方•考え方」を働かせながら，分数の意味や表し方についての理解を深めるとともに，同分母の分数の加法及び減法の意味について理解 し，それらの計算ができるようにしたり，それを日常生活に生かそうとする態度や能力を高めることをね らいとする。なお，本単元を通して「『問い』の生まれる課題設定」や「対話を通した課題解決」となる よう授業の流れを工夫し，児童の思考に沿った学習過程の充実を図っていく。
（2）児童観
本研究との関わりから児童の実態を見てみると，授業中に活発に発言したり話し合ったりする児童が一定数みられる。その一方で，学習アンケート結果を見てみると「出された問題から問いや疑問を持つこと がありますか」では肯定的な回答が 48% ，「一つの考え方が分かっていても，別の方法で考えてみること はありますか」では 48% と，全体として，やや否定的な傾向がみられた。算数の学習において，児童の主体的な学びの姿勢について課題がある。その原因として，これまでの自身の指導では，導入の問題提示か らすぐに自力解決にうつるなど，児童が問題解決に向かう「必要性」を感じないまま，受け身の学習とな ってしまっていたことが考えられる。また，「友達の意見や考えを取り入れて問題を解くことがあります か」という質問では 33% ，「問題を解く前に自分なりの見通しをもつて取り組んでいますか」では 42% と，それぞれ否定的な回答がみられ，「算数は好きですか」の質問には 46% が否定的な回答をしている。 このことから，解決方法や見通しがもてず問題解決できないことで，算数の学習に対し苦手意識が出てし まっていることなどが考えられる。教師の一方的な問題提示ではなく，児童が自分で問題を発見し「解決 したい」と思えるような課題設定の工夫や，「数学的な見方•考え方」をもとにした明確な視点で自立的，協働的に解決に向かえるような手だてを工夫する必要がある。
（3）指導観
指導にあたつては，児童が既知の「数学的な見方•考え方」から，問題発見や見通し，問題解決に取り組み，新たな「見方•考え方」を生み出していけるよう「問いを生む課題設定」や「対話による問題解決」 が図れるような学習過程を工夫したい。また，毎時で働かせたい「数学的な見方•考え方」については，

問題提示の際に「しかけ」や発問を工夫したりして，児童から引き出せるようにするとともに，「『算数 のミカタ』カード」を使って視覚化し，児童が意識して活用できるようにする。

単元の導入では，既習の「1 より小さい数を表す」分数の概念をもとにした具体的操作から，「1 より大 きい数でも分数で表せるのだろうか」という児童の「問い」につなげ，その問題解決を動機付けとして数直線や図で考え，「単位分数をもとにして考えることで，1 より大きい数でも分数で表すことができる」 という単元を貫く「数学的な見方•考え方」をおさえたい。

第一次では，「 $7 / 5$ と $13 / 6$ の大きさ比べ」という問題提示から「 1 より大きい分数は，どうやって比べると分かりやすいのだろうか」という問いにつなげ，小単元（1）の課題を設定する。その中で「単位分数のいくつ分」という「数学的な見方•考え方」をもとにして仮分数から帯分数へ，また帯分数から仮分数への変形の仕方を，式に表して考えられるようにしていきたい。

第二次では，「1 より大きい分数はどうやって計算すると良いだろうか」という「問い」をもてるよう にし，小単元（2）の課題設定につなげていく。仮分数でも帯分数でも「単位分数のいくつ分」という考えを もとにすれば，整数と同じ考え方で計算できることや，分数の形が違うときはどちらかの形に直して考え ると計算しやすいことに気付かせたい。

第三次は，単元で学習した知識を活用し「表し方は違っていても，同じ大きさを表す分数がある」とい う，新しい「数学的な見方•考え方」を創っていく時間と位置づけ，数直線を用いた考え方に目を向ける ことで分数について理解を深めることをねらう。なお，単元の大まかな内容を見通しながら学習したり振 り返ったりできるよう「学びの足あとシート」を活用し，児童が，小単元ごとに自分の学びや「数学的な見方•考え方」を振り返れるようにする。また，単元終末にも振り返りを設定し，知識や学習内容，自分自身の学びがつながっていることを，児童が実感できるようにしたい。
5 単元の系統性

	18 小数 ${ }^{18}$ 小数の意味
14 分数	
4年－	
8 分数（1） 12 分数（2） - 約分，通分，異分母分数の加減 - 分数の第二義，分数と小数•整数の関係	

6 指導と評価計画

問い	時	学習活動	働かせたい 「数学的な見方•考え方」例	主な評価規準	特にねらいたい 「知識の構造化」
		○テープを使った具体的操作から，「1より大き い分数について考えていく」という小単元の課題をつかむ。 ○「単位分数の何個分になるか」を考え，真分数や仮分数について知る。	3／4 は，1／4 の3個分と考えるから， 5／4 はの $1 / 4$ の 5 個分と考えること ができる。	【知•技】数直線や図を用いて，分数 の大きさを表すことができる。	
	2	○帯分数について知り，分子を分母でわった商とあまりに着目し仮分数を整数や帯分数 に直す仕方を考える。	仮分数は，「1のまとまり」がい くつ分あるかを考えると，帯分数 に直せる。	【知•技】真分数，仮分数，帯分数の意味について理解している。	つながり
	3	○帯分数を仮分数に直す仕方を考え，分母の等しい帯分数と仮分数の大小を比較したり する。	$21 / 3$ は， $1 / 3$ の $(3 \times 2+1)$個分なので， $7 / 3$ と仮分数で表す ことができる。	【思•判•表】分数の大きさを，数直線や図などで表したり，分数が表さ れた数直線や図を読み取ったりし て，分数の大きさについて判断した り表現したりしている。	$フ ゚$
$\begin{gathered} \text { りう1 } \\ \text { すやよ } \\ \text { るつり } \\ \text { とて大 } \\ \text { よ足き } \\ \text { いしい } \\ \text { だた畕 } \\ \text { ちり数 } \\ \text { う引は, } \\ \text { かい, } \\ \text { たど } \\ \text { たじ } \end{gathered}$	4	○単位分数の考え方を基にして，同分母の分数の足し算，引き算の仕方について考えると いう小単元の課題をつかむ。 ○同分母の加法（和が 1 より大）や減法（被減数が 1 より大）の計算をする。	$4 / 5$ と $3 / 5$ を合わせると， $1 / 5$ の （ $4+3$ ）個分なので，整数の計算と同じように考えることがで きる。	【思•判•表】同分母の分数の加法及 び減法の計算の仕方を，日常生活に おける場面や単位分数の個数に着目 して考えている。	
	5	○帯分数を含む同分母分数の加法や減法の仕方を考え，計算をする。	帯分数は，整数と真分数の和なの で，仮分数に直すことで，整数の計算と同じように考えることが できる。	【知•技】同分母の加法及び減法の計算ができる。	活用。
は等 あし るい の大 だき ろさ うの 力分 数	6	○分母や分子が異なる分数で，等しい大きさ の分数があることを，数直線を使って理解す る。（本時）	$1 / 2$ は 1 を 2 等分した 1 個分， $2 / 4$ は 1 を 4 等分した 4 個分な ので，等しい分数と考えることが できる。	【知•技】数直線に示された分数を観察し，表し方が違っても大きさの等 しい分数に気付き，見つけることが できる。	$\begin{gathered} \text { 活用 } \\ \text { タイプ } \end{gathered}$
		○学習内容の理解を確認する。	－単位分数の考え方	【態度】学習内容の理解を確認しな がら取り組んでいる。	成長

7 本時の学習 【6／7時間】
（1）目標
分母や分子が異なる分数で，大きさの等しい分数があることを理解し，数直線を使って大きさの等し い分数を答えることができる。
（2）本時の工夫
（1）主体的な問題発見•解決となるよう，課題提示の仕方を工夫し，「数学的な見方•考え方」が明確 になるような発問を用いて，「問い」をもとに課題設定ができるようにする。
（2）「算数のミカタ」カードを使うことで，「数学的な見方•考え方」を明確化し，テープ図や数直線 を使って等しい分数の説明ができるよう，ペアでの対話から全体での対話へと広げられるようにする。
（3）展開

	学 習 活 動	○指導上の留意点 主な発問 丸引き出したい「数学的な見方•考え方」	評価項目（方法）
$\begin{gathered} \text { 導 } \\ \text { (} 7 \text { 分 } \end{gathered}$	1．復習 ○ 2 ／ 4 は 1 を 4 等分した 2 個分 ○1／2は 1 を 2 等分した 1 個分 2．問題把握 - A 君が正しい - どちらも同じ大きさなのではないか - 「同じ大きさ」といえそう めあて：「同じ大きさを表す分数」	○吹き出しのセリフを考えることで，本時の課題解決 のきっかけとなる「数学的な見方•考え方」を明確にす る。 ○はじめに出てきた「数学的な見方•考え方」と関連さ せ，その後の「どちらも同じ大きさなといえるのではな いか」という，児童の「問い」につなげるようにする。 どうして，そう考えたの？ 1 を 2 等分した 1 個分と， 1 を 4 等分した 2 個分 は同じ大きさ $1 / 2$ と $2 / 4$ とで，数字は違うのに，「同じ大きさ」ということがあるのかな？ があるのかどうか考えよう。	
$\begin{array}{r} \text { 展 } \\ (23) \\ \text { 分 } \end{array}$	3．説明するための見通しをもつ - テープ図で考える - 数直線を使って考える 4．自力解決 テープ図 - やっぱり同じだ - $1 / 2$ と $2 / 4$ 以外にも，同じ大きさとい える分数がありそう 5．対話による「数学的な見方 の共有化 －他にも，「同じ大きさを表す分数」は あるのかな 6．数直線を使い，等しい分数を探す	これまで，どのような方法で分数を比べ たかな？ ＊ $1 / 2$ と $2 / 4$ を，数直線を用いて比べるとよい。 ○「数直線」と答えた児童で，希望する児童にはワーク シート（上半分）を配布する。 直線の図 までを表せるワークシート） それぞれの考え方に共通することはあるかな？ すべて「1」をもとにした半分になっている。 ○○んは，どうしてこのように考えた のだと思いますか？ 大数直線を使って等しい分数を探す ○「『1』をもとにした半分」という考え方から，「別 の分数についても同じ大きさの分数があるのではない か」という，次の「問い」へつなげられるようにする。 ○ $1 / 10$ まで表せる数直線のワークシート（下半分）を配布する。	【態度】 （発言•観察・ノート） （概ね満足） 「問い」に対して，単位分数の考え方をもとに しながら分数を比べよ らとしている。 （十分満足） 「問い」に対して，いく つかの方法で分数を比 べようとしている。

	数直線の図 （ 10 までを表せるワークシート） －大きさの等しい分数が，いくつか見つ けられた －1／○とかじゃなくても， $2 / \bigcirc$ などで も，等しい分数がある - $1 / 2$ と $2 / 4$ と $3 / 6$ と $5 / 10$ が等しい - $1 / 3$ と $2 / 6$ などが等しい - $4 / 5$ と $5 / 10$ なども等しい 7．練習問題 「同じ大きさの分数を，三組答えまし ょう」	それぞれの考え方に共通することはあるかな？ 丸分母が 2 倍， 3 倍となっていくと，分子も 2 倍， 3 倍 となっていく。 丸分母が大きいほど， 1 こ分の大きさは小さくなって いく。	【知•技】（観察・ノート） （概ね満足） 数直線をもとに，大きさの等しい分数を答えること ができる。 （十分満足） 等しい分数のきまりをも とに，数直線を使わなくて も等しい分数を答えるこ とができる。
$\begin{array}{r} \text { 終 } \\ \text { 末 } \\ (15) \\ \text { 分 } \end{array}$	8．学習内容をまとめ，振り返る。 まとめ：「同じ大きさを表す分数」は （1／2と $2 / 4$ と $3 / 6$ ）（3／4と 振り返り： －数直線で比べると，同じ大きさの分数 がいくつもあると分かった －分母が違っていても，同じ分数に置き換えて足し算などができるかもしれな い －もつと違う分数でも考えてみたい	○（ ）は空白にし，自分で考えて記入させる。 （ある）。同じ大きさの分数には，例えば と 6／8）などがある。 今日の考えを発展させて考えられそうかな？ 「振り返りの視点」を提示し，自分でどの視点の学び があったかを考えながら，振り返らせるようにする。	

7 板書計画

1 作業仮説（1）の検証
問題解決の学習場面において，「『問い』 の生まれる課題設定」「対話を通した課題解決」という「数学的な見方•考え方」を働かせた学習過程を工夫することで考え る視点が明確になり，主体的•対話的に知識をつなぎ，よりよく考えることがで きるであろう。
（1）「数学的な見方•考え方」について
本研究において，「数学的な見方•考え方」を「問題解決につながる，（主に）既習事項をもとにした考え・表現」として捉 えた。ここでは，単元を通して行った「数学的な見方•考え方」をもとにした問題解決場面の手だてと，その結果及び考察を中心に述べる。
（1）手だて
問題提示の際，児童から引き出した
「数学的な見方•考え方」を「『算数のミ カタ』カード」（以降，「ミカタカード」） を使って視覚化し，解決の見通しや話し合いの視点が明確になるようにした。
（2）結果
単元を通して「数学的な見方•考え方」 をもとに問題解決している児童の様子 が見られた。また，ある児童の説明に対 する教師の「さらに詳しく説明できるか な？」という問いかけに対し，問題解決 に有効な見方•考え方を使って，説明を付け加える児童の姿が見られた（図 7 ）。

図7 単位分数の考え方をもとに $\frac{6}{4}$ を説明する様子
第1時で「単位分数のいくつ分，と考 えることで 1 より大きい数でも分数で表せる」という，単元を貫く「数学的な

見方•考え方」をおさえたことで，第4時の加減計算の際に「単位分数」をもと にして計算方法の見通しを立てる児童 が多く見られた（図8）。

図8 既習内容をもとに計算方法を考えている記述
（3）考察
問題把握の段階から，「数学的な見方•考え方」が焦点化され，本時の課題とな るように意識した。そこから，掲示した「ミカタカード」をもとに進めていった ため，児童は考える視点が明確になり，本時で働かせたい「見方•考え方」をも とにして見通しをもち，問題解決につな げられたと考える。また，単元はじめに おさえた「単位分数」の考えをもとにし て加減計算の方法を考える児童が多か ったことからも，「数学的な見方•考え方」 を働かせながら，「既習と未習」「自分の考えと友達の考え」をつないで問題解決 に生かすことができたと考える。
（2）「『問い』の生まれる課題設定」について
「『問い』の生まれる課題設定」につい て，ここでは，特に第 1 時，第 3 時，第 6時の具体的な手だて，結果及び考察を中心 に述べる。
（1）手だて
児童の「問い」を生むため，今回は，児童が，問題を視覚的に捉えやすい「図 や絵に置き換える」，答えを考えやすい「選択肢」，数学的な見方•考え方を焦点化しやすい「隠す」「間違える」等のしか けを取り入れ，児童の「問い」が生まれ ることをねらって問題提示をした。
（2）結果

第1時では，単位分数の考えの定着をね らい，$\frac{1}{4}$ という分数をテープ図に置き換え て視覚化した（図9）。そこで，分数が 1 をこえる場面を作り出し，「1より大きい分数の表し方がわからない」といら問題発見から，「1より大きい分数は，どのよう にして表すとよいのだろう？」という問い につなげることができた。

図9 問題提示の際取り入れた！しかけ」（1）第3時では，仮分数を帯分数で表す「よ さ」の発見をねらい，二つの分数 $\frac{7}{5}$ と $\frac{13}{6}$ を提示し，「どちらが大きいでしょう？」 という，二つの選択肢から選ぶ問題にして提示した。選択肢によって，「1 のまとま り」に児童が気付き，そこから，単位分数 を「1のまとまり」で整数に直す，という帯分数の考え方を共有することができた。

第6時では，問題の一部を隠して児童に予想させたり，間違った答えを提示するこ とで，「数学的な見方•考え方」の焦点化 をねらつた。「等しい大きさの分数は，あ るのだろうか」という「問い」につなげる

図10 問題提示の際取り入れた！しかけ」（2）
（3）考察
第1時では， 1 より大きい数を分数で表す状況で，「 $\frac{1}{4}$ の 6 個分」や「 1 と，あ と $\frac{2}{4}$ 」など，自分なりの言葉で仮分数を表現しようとする児童のつぶやきが出て きていた。第6時では，教師の提示した間違った答えに対して，どうにかして間違っ ている理由を説明しようとする児童の姿 が多く見られるなど，意欲的に「問い」を解決しようとする姿が見られるようにな った（図 11）。

図11「問い」に対し，考えを説明し合う様子 また振り返りでは，得られた結果をもと

にして新たな「問い」につなげる様子が表出された（図 12）。

図12 結果から，次の問いへつなげる様子
学習問題に「しかけ」を取り入れ，焦点化した「数学的な見方•考え方」を児童の「解決したい問い」とつなげられるよう意識したことで，考える視点が明確になった り，「問い」を解決する過程で次の「問い」 が見つかるなど，主体的な学びにつながっ たものと考える。
（3）「対話を通した課題解決」について
（1）手だて
本研究において「対話」を，「数学的な見方•考え方を共有するための教師と児童， または全体やペアとのやりとり」とした。対話を通して「見方•考え方」を明確にし て全体で共有してから，その見通しをもと に問題解決していった。
（2）結果
第1時では，$\frac{6}{4}$ を「 $\frac{6}{8}$ 」と答える児童が いたが，「でも，$\frac{1}{4}$ が 6 個だから，分母は変 わらないんじゃない？」という，別の児童 からの発言により，単位分数の考え方を正 しく捉え直すことができた場面が見られ るなど，単元を通して，対話をもとに問題解決へとつなげる様子がよく見られた。振 り返りでは，友達の発言を別の方法で考え て説明したり，自分との共通点から一般化 を図ったりする姿が見られるなど，よりよ

く考えている様子が表出された（図 13）。

図13友達の発言をもとによりよく考える様子
（3）考察
板書の際に掲示した「ミカタカード」に ふれながら，自力解決や話し合いの前に「どんな考え方が使えそう？」と児童に問 いかけ，働かせたい「数学的な見方•考え方」を明確にした。考えたり話し合ったり する視点がはつきりしたことで，大事なポ イントをふまえながら，別の方法で考え方 たり共通点を考えたりすることができ，よ りよく考える態度につながったと考える。

作業仮説（2）の検証

学習の振り返りの場面において，自分の学 びを明確に意識できる発問や振り返りの視点，振り返りシートを充実させることで，児童は自身の学びをより深めたり，価値に気付いたりして，学ぶ意義を実感すること ができるであろう。
（1）振り返りを促す発問及び振り返りの視点 について
（1）手だて
児童が，授業を通して何度も学びを振り返り問題解決に生かせるよう，導入では見通しをもつための「既習内容を問ら発問」，展開では「数学的な見方•考え方を問ら発問」，終盤では「一般化を図るための発問」 を意識して使うようにした。また，授業で つないだ知識を，振り返ることでより深め られるよう，振り返りの視点を提示した。 （2）結果

振り返りを促す発問から，既習内容や友

達の発言を振り返って本時の問題解決に つなげている様子を，ノート記述から見取
ることができる（図14）。

図14発問から学習内容を振り返っている様子 また，「振り返りの視点」をもとにした ノート記述の振り返りに目を向けてみる と，単元はじめは，記述するタイプに偏り があったが，次第にそれぞれの視点を意識 した振り返りがみられるようになった。ま た，授業でつないだ学びを，振り返りによ って深めていく児童Aの変容が見られた （図 15）。児童Aは「つながりタイプ」の視点で，第 1 時では「（1）分かったこと」の みの記述だったが，学習を進めるごとに「（2）分かったことの説明」「（3）分からなか ったことから，分かったことの認知」「（4）解決策を比較し，自分が選んだ解法の理由 と説明」と，記述内容に変容が見られた。

わ カ リ 1 尤（A）／第3時						
した，たとえは，						
ちを考えました私がやりかすか						

図15 児童Aの振り返りの変容

他にも，「活用タイプ」として，友達の発表をもとに，別の単元と関連させて考え たり，「成長タイプ」の視点から手応えに つなげ学びを実感する姿など，積極的に学 びを深める児童も見られた。（図 16）。

図16 それぞれの視点から学びを深める様子
（3）考察
教師の，授業中の各場面での振り返り を促す発問と，振り返りの視点の提示に よって，児童は問題解決の見通しや考え の理由がもてたり，振り返りの記述内容 や問題を解く根拠が明確になるなどの様子が見られた。「図 15」の振り返りか らは，生活の中から既に知っていたと思 われる「百分率（\％）」（ 5 学年の内容） での表し方を，今の学習とつなげ深めて いる様子が現れたと考えられる。また，学習を振り返る発言を意識したことで「既習と未習」「自分の考えと友達の考 え」をつなぐことが，自分の学びの深ま りにも有効に働いたことを実感する記述が，単元後の調査の記述内容から，多 く見られた（表3）。

これらより，振り返りを促す発問と視点の提示によって，児童は授業を通して学習を振り返って問題解決に生かした り，終末ではつないだ学びを深めたり，手応えを感じたりするなどの学びの深 まりにつながったものと考える。

表3 学びを「つなぐ」ことに関する意識の表出「既習と未習」をつなぐこと
－勉強したことが，次も出てくるから，これをつ かえばできるんだなと分かる
（問題が）かんたんなときや難しいときは， 3年生や 5 年生の問題とつながっているときなん だなと思った
－（学習内容が）つながっていておもしろい
「自分の考えと友達の考え」をつなぐこと
－最初分からなかった問題が，友達の意見で分か るようになったからうれしかった
－ずっとむずかしいなと思っていたけど，（何人 かの）友達の発表を聞いてるうちにできるよう になってきてうれしかった
（2）「学びの足あとシート」の活用
（1）手だて
児童が，学んだことの価値や目的に気付くことで学ぶ意義を実感できると考 え，「学びの足あとシート」を用意した。 シートAは小単元ごとの振り返りとし て児童の自己評価を記入するほか，教師 の形成的評価としても活用した。シート Bでは，単元終末の振り返りとして，授業で扱った「数学的な見方•考え方」に ふれながら振り返りができている児童 の割合をもとに，検証を行った（図 17）。今回の単元では（分数の計算）のやり方が分かったよ！上：数学的な考え方下：単位分数の見方 コツは・••

「数学的な見方•考え方」 －带分数を仮分数尼しく安管する。 －$\frac{1}{0}$ の何 $=$ 分かを芯えと計管する。

図17 学びの足あとシートBの記述例 （2）結果

学びの足あとシートBでは，「数学的 な見方•考え方」にふれて全7時間を通 した振り返りができている児童の割合 として，次のような結果となった（図 18）

図18足あとシートB（児童数：33人）
また，それぞれのタイプについては，次のような記述内容が見られた（表4）。

表4 各タイプで見られた記述内容

（3）考察
学びの足あとシートから，「つながり タイプ（知識）」「スラスラタイプ（技能）」 について 8 割以上の児童が学びを深め ている様子が見とれた。また，「成長タイ プ（学びに向から力•人間性等）」につい て 9 割以上の児童が今回の学びに対し て肯定的に振り返ることができていた。成長タイプでは，ほかにも以下のような記述が見られ，振り返ることで学ぶ意義 を実感する様子が見とれる（図19）。

図 19 学ぶ意義を実感する記述内容

また，自分の学びの足あとを振り返り自己評価した記述から，以下のように「自分の学びの姿勢」を肯定的に捉え学

ぶ意義を実感する様子が現れた（図 20）。

図 20 自分の学びの姿勢から，学ぶ意睋を実感する様子
これに伴い，児童の学ぶ意義に関して，
自分の学びに関する意識調査結果から，次のような変容が見られた（図21）。

図 21 自分の学びに関する意識調査（1）
理由を見てみると，「これからも使え そうなミカタを見つけたから」「やり方 が分かったら次はこうしたいと思った」「大きさの等しい分数をもつと探した いと思った」「今回は帯分数を仮分数に かえたけど，次はかえないでやってみた い」「簡単にできてもほかの方法を見つ けたい」など，知識及び技能が身につい たこと以外にも，よりよく考えたり学び を発展させることに意識が向いている記述が多く見られた。これらから，児童 が学びの振り返りを通して学ぶ意義を実感でき，さらに「学ぶ意義の実感」が次の学びを「つなぐ」ことにも有効に働 いたものと考える。一方で，思考力•判断力•表現力の高まりについて，十分と はいえない結果となった。知識の活用に， より重点を置いた授業づくりはもちろ ん，表現することで知識を積極的に活用 することにつながり，かつ評価の視点を明確にした振り返りシートの工夫•改善 が，まだまだ必要である。
3 本研究を通して
本研究は，問題解決場面における「数学的 な見方•考え方」を働かせた学習過程の工夫 と振り返りの充実により，学びを「つなぎ」「深める」児童の育成することを目的に研究 を行った。

学びを「つなぐ」については，「数学的な見方•考え方」を働かせながら「既習と未習」 や「自分の考えと友達の考え」を主体的•対話的につなぐ児童の様子がよく見られ，より よく考える姿につながったと考える。学びを「深める」については，発問や視点，学びの足あとシートをもとに，学びを深める児童の

様子が見られた。また，算数の学習に関する
調査では次のような変容が見られた（図 22）。

算数の学習は好きですか。

ロとてもそう思う ロそう思う 凹あまり思わない ロほとんど思わない

図22 自分の学びに関する意識調査（2）
「問い」をもとに考えたり，友達との対話 を通して問題解決してきたことで，知識及び技能の習得だけでなく，よりよく考え解決で きたことや学習への手応えにつながり学ぶ意義が実感できたため，算数の学習に対する肯定的な感情が高まったものと考えられる。

一方，課題の残った「活用タイプ（思考力•判断力•表現力）」の深まりについては，引き続き改善を目指し取り組んでいく。
IX 研究の成果と課題
1 成果
（1）問題解決に生かしたい「見方•考え方」を，教師が焦点化•視覚化することを意識した ことで，児童の考える視点が明確になって学びを「つなぐ」ことができ，教師の授業づ くりにも生かすことができた。
（2）振り返りの視点及び「学びの足あとシー ト」を活用したことで，児童が学びの姿を具体的にイメージして学習したり振り返った することができ，学びをより深めたり，学ぶ意義を感じることにつながった。
2 課題
（1）知識を活用し，児童が自ら学習を生活や他教科へつなげていけるような，「活用タイ プ」を重視した学習過程の設定及び工夫
（2）表現することで知識の活用にもつながる ような，「評価の視点」を意識した「学びの

おわりに
研究の始まりは，日々の「子供たちが主体的 に深く学んでほしい」という教師の思いと，そ れに反して「算数が好き」といら姿がなかなか見えてこない子供の姿との，ギャップを埋めた い思いからでした。子供たちにとって「学習の場」というのは，ほとんど「生活の場」である ことを改めて意識することができたことで，子供たちに，学ぶ楽しさや自分の成長を実感して ほしい，さらにはその実感を「自分自身ででき るようになってほしい」と感じ，そのための手 だてを，試行錯誤のなか設定しました。

検証授業では，思うようにいかないことや手 だて不足に気付いたりするなど，まだまだ研究不足であることを痛感しましたが，子供たちの楽しそうに学ぶ姿や意欲的に考える姿，何より，学びを深めていく姿が見られるようになって きたことは，私にとって大きな喜びでした。

今回の研究により得られた成果や新たな課題も見えてきたこの半年間は，今後の私自身に とって，よりいっそう貴重な経験となっていく ものと思っています。研究で得た学びを，子供 たちや学校現場に還元できるよう努めながら，引き続き精進していきたいと思います。
研修期間中，また入所前研修から多くのご助言を頂きました，長濱京子所長をはじめ，教育研究所の先生方，職員の皆様，検討会や検証授業，報告書等でご指導頂きました浦添市教育委員会の諸先生方へ深く感謝申し上げます。最後 に，本研究の機会を与え，快く研究所に送り出 して下さった神森小学校狩俣直美校長をはじ め，同校の職員の皆様，そして第49期長期教育研究員として半年間の研修をともに励んだ研究員に，心より感謝申し上げます。足あとシート」の改善

【主な参考•引用文献】

- 『小学校学習指導要領解説 総則編』文部科学省（2017）東洋館出版社
- 『小学校学習指導要領解説 算数編』文部科学省（2017）東洋館出版社
- 『深い学び』田村学（2018）東洋館出版社
- 『資質•能力と学びのメカニズム』奈須正裕（2017）
- 『数学的な見方•考え方を働かせる算数授業』盛山隆雄ほか（2018）
- 『数学的な見方•考え方を働かせる算数授業 実践編』加固希支男ほか（2020）

東洋館出版社
明治図書明治図書

- 『コンピテンシー（資質•能力）を育てる算数授業の考え方•進め方』太田誠（2017）
- 『算数授業のユニバーサルデザイン』伊藤幹哲（2015）
- 『算数の授業がうまくなる50 のワザ』尾崎正彦（2017）明治図書出版株式会社

